
Evolutionary limits to cooperation in
microbial communities
Nuno M. Oliveira, Rene Niehus, and Kevin R. Foster1

Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; and Oxford Centre for Integrative Systems Biology, University of Oxford,
Oxford OX1 3QU, United Kingdom

Edited by W. Ford Doolittle, Dalhousie University, Halifax, Nova Scotia, Canada, and approved November 7, 2014 (received for review July 4, 2014)

Microbes produce many compounds that are costly to a focal cell
but promote the survival and reproduction of neighboring cells.
This observation has led to the suggestion that microbial strains
and species will commonly cooperate by exchanging compounds.
Here, we examine this idea with an ecoevolutionary model where
microbes make multiple secretions, which can be exchanged
among genotypes. We show that cooperation between genotypes
only evolves under specific demographic regimes characterized by
intermediate genetic mixing. The key constraint on cooperative
exchanges is a loss of autonomy: strains become reliant on com-
plementary genotypes that may not be reliably encountered.
Moreover, the form of cooperation that we observe arises through
mutual exploitation that is related to cheating and “Black Queen”
evolution for a single secretion. Amajor corollary is that the evolution
of cooperative exchanges reduces community productivity relative to
an autonomous strain that makes everything it needs. This prediction
finds support in recent work from synthetic communities. Overall, our
work suggests that natural selection will often limit cooperative
exchanges in microbial communities and that, when exchanges do
occur, they can be an inefficient solution to group living.

Black Queen evolution | cooperation/exploitation | ecoevolutionary
model | genetic mixing | microbial communities

‘Benefit-of-the-species’ arguments . . . provide for the reader an es-
cape from inner conflict, exacting nothing emotionally beyond what
most of us learn to accept in childhood, that most forms of life exploit
and prey on one another.

Hamilton, 1975 (1)

Microbes typically live in dense communities containing
many strains and species. These genetically diverse socie-

ties are widespread and central to how microbes affect us, including
examples such as the gut microbiome, polymicrobial infections, and
communities vital to bioremediation and nutrient cycling (2, 3).
In these collectives, ecological interactions are thought to be
both common and strong given that cell density is typically high
and that microbes possess many phenotypes that influence the
reproduction and survival of surrounding cells (4, 5). Such social
traits include many secretions, such as extracellular enzymes and
scavenging molecules (4–6), and other beneficial “leaky” traits,
such as detoxification agents (7) or amino acids (8, 9).
A central explanation for cooperative phenotypes in microbes

is that they function to help cells of the same genotype (10, 11),
which is backed up by a growing body of theory and experiments
(12–18). However, it is also clear that, in nature, microbes
commonly interact with many different genotypes (both different
strains and species) in complex ecological networks (19–21). Do
these different microbial genotypes cooperate with one another?
Understanding this question is central to building models of
microbial communities and how they will respond to both envi-
ronmental and anthropogenic perturbations (22).
Studies involving genetically engineered (8, 9, 23, 24) and/or

artificially selected communities (23, 25, 26) emphasize how easily
cooperation between genotypes can be achieved in the laboratory.
Additionally, there are a growing number of suggestions that

cooperation should commonly evolve between microbial strains
and species (27–30). This view contrasts with empirical surveys of
natural bacterial communities, which suggest that competitive
interactions predominate over cooperative interactions (31).
However, it has also been suggested that cooperation between
different genotypes may explain the unculturability of many
species in the laboratory when in monoculture (32–34). If cor-
rect, studies with culturable species could underestimate coop-
erativity in microbial communities.
The potential for cooperation between different microbial ge-

notypes then remains unclear. Indeed, we even lack clear pre-
dictions of what to expect. There is a need for general theory on
cooperation between microbial genotypes. One microbial inter-
action that has been explored theoretically is syntrophy, where one
species produces a toxic waste product that another species con-
sumes (35–38). Syntrophy is likely to be ecologically important and
under some conditions (36), can benefit both species. However,
syntrophic species need not pay energetic costs to interact: one
species is producing waste, and the other species is feeding.
Such byproduct cooperation can, therefore, readily evolve but is
fundamentally different to the exchange of costly secretions
(39, 40). Other models have analyzed when costly cooperation
between species is expected in microbes and other organisms
(35, 39, 41). However, these models assume that there is no
opportunity for one partner to express the beneficial trait of
the other. Although this constraint will sometimes occur, there
is considerable functional overlap in the cooperative traits of
microbial species (7). In addition, the potential for horizontal
gene transfer in microbes means that there is a broad scope
for a focal strain to pick up the phenotypes of co-occurring
strains and species (42–44).
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Here, we examine the potential for microbial cooperation
between different strains and species. We base our work on the
well-established models of within-genotype microbial cooper-
ation for a single public good (12, 18, 45–47) so that the rela-
tionship to previous work is clear (SI Materials and Methods). We
add one key feature to these models: we allow cells to invest in
multiple distinct cooperative secretions, such that there is the
potential for different genotypes to exchange secretions with one
another. Our analysis shows that the degree of genetic mixing
defines the potential for cooperation both within and between
genotypes. Low mixing favors genotypes that produce all secre-
tions, whereas high mixing favors genotypes that do not produce
any at all. Only for intermediate levels of genetic mixing do we
find between-genotype cooperation, where strains produce a
subset of secretions and rely on other genotypes for the comple-
mentary traits. Moreover, the form of cooperation that emerges
is inefficient and results in a loss of productivity relative to one
genotype making all secretions. Natural selection limits both the
occurrence and effectiveness of cooperation within microbial
communities.

Results and Discussion
Logic of the Model. We are interested in the potential for the
evolution of cooperative exchanges in microbial communities.
Cooperative phenotypes can be central to growth in microbes (4,
6, 48) in both natural (49–51) and disease (52) settings. These
phenotypes are typically costly to produce but provide large
shared benefits that increase the yield of all cells in a neighbor-
hood (4–6, 48). To reflect these strong benefits, we focus on
secretions that are essential for bacterial growth and set final
population yield (Materials and Methods), although our con-
clusions also hold for nonessential secretions (Fig. S1). Whereas
our analysis is phrased in terms of secretions, like enzymes that
liberate nutrients, it also captures a range of other leaky bene-
ficial traits, such as detoxifying enzymes like catalase (7) or
amino acids (8, 9).
Fig. 1 outlines the logic of our ecoevolutionary model. For two

secretions, our model has four genotypes: a producer of both
traits [1,1], a producer of the first trait [1,0], a producer of the
second trait [0,1], and a nonproducer [0,0], where for simplicity,
1 and 0 denote production or no production, respectively, of
a given secretion, thus labeling each genotype. Our modeling is
intended to capture two related scenarios. The first scenario is a
single strain that makes multiple secretions, where loss of func-
tion mutations can generate the above trait combinations. The
second scenario is where the different genotypes come from

a combination of interacting strains and species that have similar
ecologies. This latter case has clear potential for complexities
that we do not represent, but we can, nevertheless, capture the
evolutionary dynamics that would be driven by the focal traits. In
addition to extending models of single secretions, our model is
intended to formalize the hypothesis that cooperation can arise
by different genotypes losing the genes for different secretions
(29). This hypothesis was developed from the idea of “Black
Queen” evolution (7). Specifically, if many strains all make and
use the same leaky trait, some strains can lose the trait and rely
on others to grow. For a single trait, Black Queen evolution then
has similarities to the evolution of cheating, where a diverse
network of species may be involved as either a producer or
receiver of a particular trait. When microbes possess multiple
leaky traits, it raises the possibility that two genotypes may
reciprocally exchange beneficial traits when one loses one trait
and one loses another trait (29). Linked to this scenario, a key
assumption in our analysis is that it is possible for a cell to make
all secretions if favored by natural selection (i.e., in a system
relying on two secretions, for example, there is always the
possibility of a [1,1] genotype). Although not always the case,
this possibility seems likely to be common, because many se-
cretion systems are associated with horizontal gene transfer
(42, 44). However, we discuss later the effect of some secretions
only being achievable by some genotypes.

Between-Genotype Cooperation Emerges with Intermediate Levels of
Genotypic Mixing. We are interested in understanding the effects
of natural selection when microbes produce more than one fit-
ness-promoting secretion. In particular, we are interested in
whether strains will evolve to exchange secretions. Fig. 2 gives
the final (steady-state) frequencies of each of the different se-
cretion genotypes as a function of the degree of genotypic mix-
ing. We include a model of a single secretion, which recapitulates
the well-known cooperator–cheater dynamics where limited ge-
notypic mixing (high relatedness) leads to the evolution of se-
cretion, whereas high genotypic mixing (low relatedness) leads to
a loss of secretion (15, 16, 18, 45–47). What happens when cells
can produce two secretions? At low mixing, the genotype that
produces all secretions dominates, and at high mixing, one sees
the opposite (the genotype that does not produce any secretions
dominates). Interestingly, however, at intermediate levels of
genotypic mixing, there is natural selection for partial secretors
that produce only a subset of the secretions, such as [1,0], which
rely on the complementary strain [0,1] for the other secretion. The
emergence of such cross-feeding between partial secreting geno-
types represents a simple form of between-genotype cooperation.
Why do complementary genotypes dominate nonsecretors at

intermediate genotypic mixing? The answer is in the demo-
graphics of the system and the potential for something known as
Simpson’s Paradox (45, 47). Within any one group, nonsecretors
outcompete secretor genotypes because of the costs associated
with making the secretions. However, the groups containing
more secretors produce more cells in total to seed new groups.
Then, at intermediate levels of genetic mixing, complementary
genotypes are associated with more productive groups relative to
nonsecretors and therefore, can outcompete them. Additionally,
because there is a significant amount of mixing, one partial se-
cretor genotype [0,1] will often meet the partner genotype [1,0]
within a given group, allowing them to outcompete full secretors
[1,1] that grow more slowly to make both traits. Partial secretors
compete best against full secretors [1,1] when the costs of secre-
tions are relatively high, because there is a more significant growth
advantage from not making a secretion (Fig. 2).
The behavior of the model for two, three, and four secretions

is broadly similar (Fig. 2 and Fig. S2). However, adding more
secretions to the system increases the scope for cross-feeding
genotypes to outcompete other genotypes. A key reason for this is
that increasing the number of secretions increases the associated
costs, which promotes cross-feeders over full secretors (Fig. 2). The
importance of costs is shown by changing the number of secretions

n0 = 2 n0 = 5 

Merging

Growth

Formation

Growth

Merging Formation

[1,1]
[1,0]
[0,1]
[0,0]

Fig. 1. Ecoevolutionary model of the microbial lifecycle. We considered
three cyclically recurrent phases to model the evolutionary dynamics of a
microbial population that depends on multiple secretions to grow: (i) for-
mation (stochastic seeding ofM separate subpopulations following a Poisson
process with mean n0), (ii) growth (independent evolution of each group
following logistic growth, where the carrying capacity of the environment is
proportional to the concentration of secretions in the focal group), and (iii)
merging (M groups merge, and the cycle starts again after updating the
genotypic frequencies). As an illustrative example, we show the effect of
two different n0 values in a two-trait model of four genotypes ([1,1], [1,0],
[0,1], and [0,0], which make both secretions, one secretion, the other se-
cretion, and none, respectively).
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in the system while keeping the total cost of all secretions constant
(Fig. S2). A general prediction then is that raising the costs of
secretions, either through a single secretion that is very costly or the
expression of many individually costly secretions, can favor cross-
feeders relative to full secretors. As we show below, however, using
many secretions also creates problems, because cross-feeders need
to reliably find multiple partners to be successful. This dependence
on multiple other genotypes makes cross-feeding with many
secretions particularly fragile to factors that limit access to other
genotypes (Fig. S3).
Our model assumes that all strains compete for the same

niche. Although this assumption seems reasonable given the
competition observed between strains and species from a com-
mon environment (31, 53), the extent of niche overlap will vary
between different genotypes. We, therefore, decided to test the
importance of complete niche overlap for our conclusions. We did
this by modeling two sets of interacting strains. All strains can
cooperate with one another, but only within a set do the strains
compete. Between sets, there is no resource competition con-
sistent with each set occupying a different niche. Importantly,
this model shows the same qualitative behavior as our simpler
single-niche model: between-genotype cooperation requires in-
termediate levels of genotypic mixing to evolve by natural se-
lection (Fig. S4).
In sum, we find that between-genotype cooperation can evolve

by natural selection, particularly with high costs to secretions and
intermediate levels of mixing of microbial genotypes.

Between-Genotype Cooperation Is Associated with Reduced Group
Productivity. The two-way exchanges of secretions that emerge
in the model can be viewed in at least two different ways. The
first way is cooperation for mutual benefit. Indeed, if two com-
plementary strains or species were examined in a laboratory
experiment, one would find that each cannot grow alone but
together they grow well, a result that is commonly used to di-
agnose cooperation or mutualism (31, 54). However, another as-
pect of the interaction is competitive, where each partial secretor
is acting as a cheater on full secretors and its complementary
partner. Can one then quantify the impact of this competition? A
simple but powerful way to assess the effects of competition is to
look at overall group performance, which can be harmed by
genotypes investing in competitive traits instead of cooperative
traits that benefit the group (55).

Fig. 3 shows the evolved group productivities as a function of
founder cell number (the degree of genotypic mixing). The
emergence of cross-feeding exchanges with increased genetic
mixing is associated with a loss of group productivity—a di-
agnostic of wasteful competition that is inefficient at the group
level. The greater the potential for between-genotype cross-
feeding, therefore, the lower the group performance relative to
a single strain that makes all secretions. Accordingly, any factor
that promotes cross-feeding exchanges, such as increasing the
cost or number of secretions, leads to greater losses in group
productivity. Why this reduction? The emergence of this type of
cross-feeding is associated with a loss of genes for secretion in
each partner. This loss means that less of the secretion will ac-
cumulate in a cross-feeding group relative to a group of cells that
all make all secretions.
The model does not allow strains to modulate the amount of

secretion that they make. If allowed, will cross-feeders com-
pensate for their low productivity by increasing their investment
in cooperation? We evaluated this in two ways. First, we ex-
tended our model to allow strains to invest in three different
levels of secretion (0.5, 1, and 2). Second, we developed another
model that allows strains to invest any amount in secretions by
considering mutations that can change the level of investment
(Materials and Methods). Rather than increasing group pro-
ductivity, however, allowing strains to modulate secretion levels
only makes things worse for cross-feeders (Fig. 4 and Fig. S5).
The evolution of cross-feeding is now associated with even
greater losses in group productivity, because cross-feeders evolve
to invest less in each secretion than full secretors. In sum, the
evolution of cross-feeding cooperation between microbial geno-
types is associated with significant levels of competition and
mutual exploitation.
The idea that a cooperative interaction between genotypes can

arise by exploitation has a precedent in discussions of mutualism
and host–parasite evolution (54). There it has been observed that
a chronic parasite might produce a factor that a host evolves to
depend upon. Under these conditions, removing a parasite can
harm a host, although the original basis for the interaction
was strongly negative for the host. These situations, like in our
system, can be viewed either as competitive or cooperative
depending on the comparison taken. Specifically, if an experi-
menter simply removes a partner, he or she will diagnose the
relationship as cooperative. However, this diagnosis will hide the
evolutionary history and the fact that the partnership originally
evolved through competition and exploitation. This historical
effect of competition is not merely a definitional issue; it predicts
that the productivity of microbial communities relying on cross-
feeding exchanges will be low relative to their full potential.

Constraints on the Evolution of Between-Genotype Cooperation. The
evolution of cooperation between genotypes is predicted with
relatively high costs to secretions and intermediate levels of
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Fig. 2. The evolution of within- and between-genotype cooperation in
microbial communities. We show steady-state frequencies of different
genotypes as a function of the average number of cells founding each group
(n0) and the cost of each trait (c) in systems that depend on one, two, and
three secretions to grow. Genotypes are labeled with one and zero to show
whether they invest or not in a given secretion; [1], [1,1], and [1,1,1] have the
advantage at low n0, whereas [0], [0,0], and [0,0,0] have the advantage at
high n0. Cross-feeding genotypes that cooperatively exchange secretions
dominate at intermediate values of n0 (a proxy for mixing among geno-
types), particularly for secretions with high cost (c).
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Fig. 3. Evolved average group productivity as a function of founder cell
number (n0). The emergence of cooperative exchanges between genotypes is
associated with a loss of group productivity (two- and three-trait models). This
loss of productivity occurs for the same reason that cheaters harm group
function in single-secretion models (one-trait model). This outcome is particu-
larly clear for secretions with high cost (c) and a high number of traits. Average
group productivities were obtained from 1,000 independent subpopulations. SE
bars are smaller than the plotting dots and therefore, not shown.
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mixing of microbial genotypes. Do these conditions commonly
occur in nature? The fitness cost of secretion can be highly
variable in strongly regulated traits, such as siderophores,
depending on how much a cell makes (56). Nevertheless, esti-
mates of costs of secretions are often low (in the range of a few
percent of growth rate or less) (57–59). Low-cost secretions are
expected whenever prudent regulation limits secretion to times
when it is cheap to do so (59). The effects of costs are also
limited when secretions have a private component that benefits
a secreting cell more than other cells (60). If low-cost secretions
are the norm in nature, then our model suggests that the emer-
gence of between-genotype cooperation will be limited. Potential
exceptions to this prediction are if cells use many relatively costly
secretions (Fig. 2 and Fig. S2) or indeed, if using multiple secre-
tions is, for some reason, disproportionally costly (Fig. S6).
What about the levels of genetic mixing in microbial com-

munities? This key variable is still poorly understood (6, 22).
However, what is clear is that many natural microbial commu-
nities display spatial structure, whereby microbes attach to sur-
faces and each other and grow (16, 61). This structuring will
affect genetic mixing and is not accounted for in our model,
which assumes that genetic mixing within any one microbial
group is perfect. To examine the impacts of spatial structure, we
implemented an individual-based version of our two-secretion
model, where cells are seeded on a lattice and divide if they have
space around them and access to both public goods (Materials
and Methods). In particular, we focus on parameter ranges that
strongly promote cross-feeding pairs in the absence of spatial
structure within the group.
We first use the individual-based model to recapitulate the

well-mixed model by allowing secretions to diffuse a long distance
so that cells have access to all secretions. We then implement a low-
diffusion scenario so that secretions only reach a limited range.
This simple change has a strong qualitative effect on predictions:
now, the genotype that produces both secretions is dominant (Fig.
5A). The reason for this effect is intuitive: spatial structure limits
the potential for interactions with other genotypes. Cross-feeders
are now much less likely to interact with their complementary
partner, which means that they will often lack secretions that they
need for their growth.
Spatial structure then tends to limit cooperation between

microbial genotypes, which is consistent with recent empirical
work showing that spatial structure can limit positive interactions
between microbial genotypes (26, 62). This effect contrasts with

the typical conclusion that spatial structure promotes cooperation
(13, 16, 17, 63, 64) by increasing the probability of interacting with
the same genotype (10, 11). However, cooperation between gen-
otypes in our multitrait model emerges under the same conditions
as cheating in the classical models. Accordingly, we find that
spatial structure simultaneously inhibits between-genotype coop-
eration and promotes within-genotype cooperation.
Another assumption of our model, which is important for

genetic mixing, is that all interacting genotypes in the system
make use of the secretions. This assumption is likely to be bro-
ken, because the extreme diversity associated with natural mi-
crobial communities suggests that there will often be many
species present that do not use or make the secretions of our
focal genotypes (65). In models of a single secretion, it has been
shown that such passive genotypes can insulate a focal genotype
from interacting with other genotypes that might use its secre-
tions [social insulation (65)]. Fig. 5B shows the effect of in-
troducing passive genotypes that do not use the secretions or
resources of the focal group. Like the effect of introducing space,
the presence of passive genotypes decreases the probability that
cross-feeding genotypes interact with their complementary
partner, thereby favoring strains that can function effectively in
isolation. Put another way, passive genotypes reduce the group
size of the focal interacting genotypes, which reduces the effec-
tive level of genetic mixing and promotes autonomous genotypes
like [1,1].
We saw earlier that a high number of secretions can promote

cross-feeding (Fig. 2 and Fig. S2). However, it is important to note
that the introduction of passive genotypes has a disproportionately
strong effect when cells use a high number of secretions (Fig. S3).
With many secretions, each cross-feeder has to find multiple
partners, and passive genotypes become more of a problem than
when a cell has to find just one partner. In sum, the use of many
traits presents cross-feeders with two problems. First, cross-feed-
ing involving many traits is associated with greater reductions in
group productivity than with fewer traits; communities become
more inefficient (Fig. 3). Second, relying on many traits makes
cross-feeding networks fragile in the sense that each cross-feeder
will typically require multiple other genotypes nearby to grow
(Fig. S3).
Although we expect the effect of passive genotypes to be

strong, mechanisms that promote association between comple-
mentary strains will improve the prospects of cross-feeding.
Candidate mechanisms that promote association include emer-
gent sorting that can occur if two strains grow more in each other’s
presence than when alone (22, 65, 66), chemotaxis toward partner
genotypes, or even direct attachment (67). The importance of such
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high mixing, whereas Lower shows the mean investment in secretions. Inset
clarifies that genotypic frequencies are identical at the beginning, but pro-
ducers of both traits quickly reach fixation. SE bars for steady-state invest-
ments are smaller than the plotting lines and therefore, not shown. We set
the cost per trait (c) at 5%.
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Fig. 5. Effect of spatial structure and social insulation on the evolution
of between-genotype cooperation. (A) Spatial structure (individual-based
model). Space hinders the evolution of between-genotype cooperation with
local diffusion of secretions, because genotypes are prevented from inter-
acting. Upper shows cartoons to illustrate the diffusibility of secretions. (B)
Social insulation modeled in well-mixed groups. The presence of passive
genotypes, which do not compete with focal genotypes and do not contribute
with traits, can prevent the evolution of between-genotype cooperation.
Upper illustrates temporal dynamics (in generations G) for the three outcomes
of the model. The cost per secretion (c) was set at 5%.
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assortment processes in nature is not known, but it is an in-
teresting area for future studies.

Conclusions
Our models identify conditions under which different microbial
genotypes evolve to exchange fitness-promoting secretions. This
outcome might occur through the selective loss of costly but
leaky traits through Black Queen dynamics (7, 29). The Black
Queen Hypothesis was developed to explain the genome
streamlining often seen among free-living organisms (7, 58). It
suggests that microbes will lose functions that are costly but can
be obtained from other genotypes because of their leaky nature
(7). This process leads to the evolution of dependencies among
genotypes and potentially interdependent networks of co-
operation in microbial communities (29). However, consider-
ation of the costs of secretions and the levels of genetic mixing
in natural communities suggests that the evolution of such co-
operative networks is not always expected. Instead, our models
predict that it may often be beneficial for a microbial genotype to
produce all of the secretions that it needs.
Constraints may sometimes prevent a microbe from evolving

all of the cooperative traits that it needs (i.e., a [1,1] strain
cannot evolve). This scenario makes cooperative exchanges with
other genotypes much more likely and corresponds to the typical
view of mutualism between species (Fig. S7). However, the
widespread potential for horizontal gene transfer (42–44) sug-
gests that the evolution of multiple traits should often be pos-
sible. Possessing multiple traits is beneficial in our model,
because it removes reliance on other strains that may not be en-
countered. This benefit of autonomy then has the potential to limit
both between-genotype cooperation and the evolution of cheating
genotypes (10, 11, 15, 63, 65).
Does the between-genotype cooperation that we see in our

model ever evolve in nature? An interesting corollary of the
similarity between cheating and between-genotype cooperation
in our model (Fig. 2) is that the discovery of one in nature should
help to identify conditions that favor the other. A phenotype
often associated with both cheating (15) and Black Queen evo-
lution (7) is the production of siderophores, which are secreted
iron-scavenging molecules. Studies of marine assemblages sug-
gest that bacterial strains often evolve to not secrete siderophores,
while retaining the import proteins to take up siderophores made
by other strains and species (32, 49). In addition, siderophores
seem particularly amenable to cheating and cross-feeding, because
they can be both costly (56) and diffusible (Figs. 2 and 5A).
Siderophore interactions, therefore, may be unusually prone to
the evolution of between-genotype cooperation.
Amino acids are another potential currency for cooperative

exchange in microbial communities. Many bacteria lack the
ability to make certain amino acids, particularly those that are
costly to make (8). This observation raises the possibility that
cooperative networks of amino acid exchange occur in microbial
communities, which was recently shown for synthetic communi-
ties of up to 14 different auxotrophic genotypes of Escherichia
coli (8). What is critical for our arguments, however, is that the
WT E. coli that makes all amino acids grows at least 1.5–2 times
faster than the cooperating communities. If these networks of
amino acid exchange do evolve in nature, therefore, then they
are likely to be relatively inefficient.
Cooperation between cells of a single genotype seems com-

mon, which is likely explained by the clonal and patchy nature of
microbial growth that guarantees frequent association between
genetically identical cells within microbial communities (13, 16,
17, 68). Here, we have shown that cooperation between micro-
bial genotypes is expected under different conditions (inter-
mediate levels of genetic mixing), and it remains to be seen
how often these conditions arise in nature. Both spatial structure
and social insulation can cause problems finding a cooperating
partner. Moreover, we show that, even when cooperation does
emerge between strains and species, it can be exploitative and
wasteful relative to single-genotype cooperation. This prediction

has implications for synthetic ecology and our ability to engineer
microbial communities for our own ends (8, 22, 69). If cooperative
interactions in natural microbial communities are both limited and
inefficient, there should be a broad scope for improving commu-
nity productivity using strategies that promote positive interactions
between species. More generally, our work cautions strongly
against a view where microbial communities are dominated by
networks of species working together in harmony. Competition
is likely to be central to many microbial interactions, perhaps
even the cooperative ones.

Materials and Methods
Ordinary Differential Equation Models with Fixed Investment into Secretion.
Wemodel the population dynamics ofmicrobial genotypes growing in awell-
mixed environment using systems of ordinary differential equations (SI
Materials and Methods). Briefly, each system is composed by 2s equations,
where s is number of secretions in a given model, and each equation repre-
sents the population dynamics of a given microbial genotype in each sub-
population. For a system of two cooperative secretions, the four genotypes
([1,1], [1,0], [0,1], and [0,0]) grow according to the following general form:

dgij

dt
=
�
r − ði+ jÞ · c� ·gij ·

�
1−

P
g

K

�
,

where gij represents the density of individuals of genotype [i,j] in each
subpopulation [ði,jÞ∈ f1;0gs], r is the intrinsic growth rate (here assumed to
be r = 1 for simplicity), and c is the cost of producing each trait. Here, we
assume additive costs for secretion production, but we also considered
nonlinear costs—both accelerating and decelerating (Fig. S6). K, the carrying
capacity of the environment, is a function of the secretions available in
each subpopulation (Fig. S8).

We consider a standard lifecycle ofmicrobes [thework by Cremer et al. (45)
and references therein further discuss the lifecycle]: (i) formation, where a
random number of cells is allocated to each subpopulation (based on a
Poisson process with mean n0; Fig. S9) in a set of M subpopulations and the
identity of each cell follows a uniform distribution based on the frequency
of each genotype; (ii) growth, where genotypes in each group proliferate
according to logistic dynamics (until saturation is reached); and (iii) merging,
where the M groups are merged together and the global genotypic fre-
quencies are updated. After a full cycle of seeding, growth, and merging
(equivalent to one generation), new patches are seeded according to the
recalculated genotypic frequency. These cycles are repeated for G gen-
erations until genotypic frequencies reach equilibrium.

Ordinary Differential Equation Models with Variable Investment into Secretion.
We implemented two different frameworks that are here called discrete and
continuousmodels for the evolution of investment. In the discrete version,we
extended our model described above to allow strains to invest in three
different levels of secretion to give genotypes [0.5,0.5], [1,1], [2,2], [0.5,0],
[1,0], [2,0], [0,0.5], [0,1], [0,2], and [0,0]. In Fig. 4, full producers invest the
same in both secretions, but we find the same qualitative results when we
drop this assumption (Fig. S5). The continuous version uses the same life-
cycle, but we add a mutation phase, where a mutation can either increase or
decrease the investment into cooperation. The lifecycle is then (i) formation;
(ii) mutation, where each cell of the subpopulation mutates its parameter x,
which governs how much a cell invests into its public goods; (iii) growth; and
(iv) merging. Each cell type proliferates as before, but we additionally con-
sider its investment in secretions:

dgx,ij

dt
=
�
r − ði+ jÞ · x · c� ·gx,ij ·

�
1−

P
g

K

�
,

where gx,ij represents the density of the cell type with genotype [i,j] and
investment x. Thus, the genotypes are now effectively x·gij and not gij as
before. For example, if x = 2, a strain [1,1] will behave as a genotype [2,2].

Individual-Based Model. We use spatial simulations of 2D lattices with pe-
riodic boundaries. Cells can only divide into empty spaces of their closest
neighborhood, and the effect of a public good is limited to a neighborhood
of a certain size around the producer cell. At each sampled time step, a focal
individual is selected with uniform probability, and the cell divides with
probability directly proportional to growth rate, which depends on pop-
ulation density and public goods level, following logistic kinetics. As for the
deterministic version with fixed investment, cells undergo our standard
three-step lifecycle (SI Materials and Methods).
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SI Materials and Methods
Here, we present an extended version of the methods used in
the paper.

Ordinary Differential Equation Models with Fixed Investment into
Secretion. There is a large literature on the evolution of single
microbial secretions—often known as studies of cheaters and
cooperators—that includes both theory (1–4) and empirical tests
(5–8). Our goal here is to build directly on this work. We,
therefore, base our models on two recent and detailed studies of
single secretions (3, 7). These studies assume that cells land in
patches stochastically, such that the number of cells across patches
follows a Poisson distribution (Poisson-based seeding) (Fig. S9).
Such seeding is based on the realistic assumption that the number
of cells per patch is not deterministic and the same across patches
but random. Earlier models used simpler demographics, but this
difference does not affect our conclusions (Fig. S9), such that our
model also recapitulates the predictions of other studies of single
secretions (2, 4).
We model the population dynamics of microbial genotypes

growing in a well-mixed environment using systems of ordinary
differential equations (ODEs). Each system is composed by 2s

equations, where s is the number of traits (secretions) in a given
model, and each equation represents the population dynamics
of a given microbial genotype in each subpopulation. The total
number of genotypes in each model is, thus, captured by binary
combinatorics; each genotype is labeled by a binary string, where
one and zero mean production or nonproduction of a certain
trait, respectively. Here, we explain the two-trait model, but the
framework is equivalent for the one- and three-trait cases pre-
sented in the text. For a system of two cooperative traits, the four
genotypes ([1,1], [1,0], [0,1], and [0,0]) grow according to the
following general form:

dgij
dt

=
�
r− ði+ jÞ · c� · gij ·

�
1−

P
g

K

�
;

where gij represents the density of individuals of genotype [i,j] in
each subpopulation [ði; jÞ∈ f1; 0gs], and s is the number of traits.
Specifically for the two-trait model, one has the following system
of four ODEs:
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>>>>>>>>>>>>:
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where r is the intrinsic growth rate (here assumed to be r = 1 for
simplicity), and c is the cost of producing each trait. Note that we
assume here additive costs for secretion production (given by the
summation of the genotype index). We also considered nonlin-
ear costs (both accelerating and decelerating), and these func-
tional forms do not qualitatively affect our conclusions (Fig. S6).
Importantly, K (the carrying capacity of the environment) is

a function of the traits available (here given by the frequency
of producers of each trait) and has the following general form:

K =Kbasal +KmaxB

�
g11 + g10

g11 + g10 + g01 + g00
·

g11 + g01
g11 + g10 + g01 + g00

�
;

where Kbasal and KmaxB are constants representing the minimal
carrying capacity of the system and the maximum benefit from
secretions, respectively (here, Kbasal = 1 and KmaxB = 100,000).
Note that we use multiplicative benefits, because we assume that
all cooperative traits are essential, which together with Kbasal = 1,
represents the requirement of cells having access to all secretions
to be able to grow. However, we also vary the strength of selec-
tion by considering increasing values of Kbasal. Fig. S1 shows that
increasing Kbasal reduces the potential for between-genotype co-
operation, but when it evolves, it does so under the same de-
mographic conditions and intermediate values of genetic mixing.
Moreover, given that it is not fully known how K scales with
secretions, we additionally implemented an additive version,
where now we consider additive benefits instead of multiplicative
benefits (Fig. S8). Again, the evolution of between-genotype co-
operation is restricted to intermediate values of genetic mixing. To
model the effect of niche overlap on the evolution of between-
genotype cooperation, we analyzed an extension of the two-trait
model presented above, where we considered eight genotypes
belonging to two different species. In this case, only genotypes
from to the same species compete for resources (Fig. S4).
We consider a standard lifecycle of microbes [the work by

Cremer et al. (3) and references therein further discuss the
lifecycle]: (i) formation, where a random number of cells is al-
located to each subpopulation (based on a Poisson process with
mean n0) in a set of M subpopulations (here, M = 1,000) and the
identity of each cell follows a uniform distribution based on the
frequency of each genotype [which we assumed is the same for
all genotypes at the beginning (G0)]; (ii) growth, where geno-
types in each group proliferate according to logistic dynamics
(until saturation is reached); and (iii) merging, where the M
groups are merged together and the global genotypic frequencies
are updated. After a full cycle of seeding, growth, and merging
(equivalent to one generation), new patches are seeded ac-
cording to the recalculated genotypic frequency. These cycles are
repeated for G generations (typically 1,000), which is sufficient
for genotypic frequencies reaching equilibrium.

ODE Models with Variable Investment into Secretion. To model the
evolution of investment into secretion production, we imple-
mented two different frameworks (here called discrete and
continuous models for the evolution of investment). In the dis-
crete version, we simply extended our model described above to
allow strains to invest in three different levels of secretion (0.5, 1,
and 2). We, thus, considered the genotypes [0.5,0.5], [1,1], [2,2],
[0.5,0], [1,0], [2,0], [0,0.5], [0,1], [0,2], and [0,0] and show that [2,2]
evolves under low mixing but that [0.5,0] and [0,0.5] will evolve
under the conditions favoring cross-feeding. Here, we assume for
simplicity that full producers invest the same to both secretions,
but we find the same qualitative results when we drop this as-
sumption (Fig. S5).
In the continuous version, we use the same lifecycle but add

a mutation phase, where we allow for mutations that can either
increase or decrease the investment into cooperation. The life-
cycle is then (i) formation; (ii) mutation, where each cell of the
subpopulation mutates its parameter x, which governs how much
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a cell invests into its public goods; (iii) growth; and (iv) merging.
In the growth phase, the evolution of each single subpopulation
is governed by a set of z ODEs, where z is the number of indi-
viduals that inhabit each subpopulation after mutation. Each
initial cell z then proliferates according to the general ODE

dgx;ij
dt

=
�
r− ði+ jÞ · x · c� · gx;ij ·

�
1−

P
g

K

�
;

where gx,ij represents the density of the cell type with genotype
[i,j] and investment x, and K is still a function of the secretions
available (given by the frequency of secretors), which now incor-
porates explicitly the evolvable investment x of cells:

K =Kbasal +KmaxB

�
x · g11 + x · g10

g11 + g10 + g01 + g00
·

x · g11 + x · g01
g11 + g10 + g01 + g00

�
:

Thus, the genotypes are now effectively x·gij and not gij as before.
For example, if x = 2, [1,1] will behave as a genotype [2,2],
because we assume for simplicity that full producers will evolve
the same level of investment for both traits.

Individual-Based Model. We used an individual-based model to
examine the effects of spatial structure on our predictions. In
particular, we ask if between-genotype cooperation can evolve if
secreted traits have limited diffusion, which may be common on
surfaces (9). To capture the effect of diffusion, we use spatial
simulations that consider 2D lattices with periodic boundaries.
Cells can only divide into empty spaces of their closest neigh-
borhood (eight spaces around the focal individual), and the effect
of a public good is limited to a neighborhood of a certain size
around the producer cell. This spatial version is based on the
same assumptions as the previous model for homogenous envi-
ronments, and it uses an adaptation of the Gillespie algorithm for
simulating population dynamics in continuous time (10). Al-
though exactly equivalent to the Direct Method by Gillespie (11),
this alternative is computationally more efficient and can easily
handle large populations of individuals with individual properties

according to rules for cellular growth. At each sampled time step,
a focal individual is selected with uniform probability, and a cell
division event is then realized with a probability directly pro-
portional to its growth rate, which depends on population density
and the presence of public goods following logistic kinetics. The
stochasticity of cell division adds extra variance to the final ge-
notypic composition of the simulated patches compared with the
deterministic growth in the ODE version. Thus, the results of the
individual-based model and the ODE model are not always
identical for identical parameter values, with cooperation typi-
cally emerging more easily in the individual-based model. Nev-
ertheless, we can use the individual-based model to specifically
evaluate the effects of spatial structure by comparing a high-dif-
fusion case, where between-genotype cooperation emerges, with
a low-diffusion case (here given by a neighborhood of 24 cells
from the source).
We implemented the standard three-step lifecycle like for the

deterministic version. First, a number of M separate lattices is
seeded according to the initial genotypic frequencies. Second,
each subgroup develops separately, with cell growth being spa-
tially simulated. Third, the subgroups are merged to update the
genotypic frequencies, which are used for the following seeding
step. Importantly, we let the yield of a focal subgroup depend on
the presence of traits (secretions) in this group, with the conse-
quence that subgroups with more producers will have higher fi-
nal yield. Although in the ODE model K changed continuously
with the number of producers, in the individual-based model K
remained constant for the duration of the growth phase, but
then, we weighted subgroups according to the proportion of
producers present at the end of the simulation before the merging
step. This implementation captures the dependence of subgroup
yield on the proportion of producers in a group in a manageable
way, but it differs from the ODE model. This different im-
plementation of secretion-dependent carrying capacity could
potentially affect comparisons between the two model frame-
works. However, as discussed above, we only directly compare the
cases of global and local diffusion within the individual-based
model framework.
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Fig. S1. Effect of basal fitness on the evolution of between-genotype cooperation in microbes. Our main models assume that secreted traits are essential for
growth, which means that groups without secretions will not grow. Here, we vary Kbasal (carrying capacity without secretions) from 1 to 10,000 [up to 10% of
the maximum benefit from secretions (KmaxB)] (SI Materials and Methods). The only effect is to reduce the scope for between-genotype cooperation, which
further suggests that cooperation among microbial genotypes is limited. Results from the two-trait model (ODE version) with the cost (c) at 5% of growth rate
are shown.
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Fig. S2. Effect of increasing the number of traits on the evolution of cross-feeding. (Lower Left) Systems that rely on four secretions select more for co-
operative cross-feeding than those relying on three secretions only. This results from the increasing cost of adding another secretion to a genotype that
produces all traits. (Lower Right) If total costs are fixed (here, at 10% of maximum growth rate), then adding another secretion reduces the prevalence of
cross-feeding.
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Fig. S3. Social insulation in systems with increasing numbers of traits. The introduction of passive genotypes has the same effect on the evolution of co-
operative cross-feeding in systems relying on two, three, and four traits: a high percentage of passive genotypes prevents between-genotype cooperation.
(Lower Right) Holding the total cost of all secretions constant shows that social insulation is particularly problematic for systems with many secretions. Here, we
fixed total costs at 10% of maximum growth rate and genetic mixing at n0 = 10, which promote cross-feeding in the absence of passive genotypes.
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Fig. S4. Evolution of cooperation between genotypes without overlapping niches. For the nonoverlapping case, we consider two species of bacteria (species A
and B) that do not compete for the same resources. Each species is composed by the same four genotypes considered in the standard model. Importantly,
secretions can be used by any genotype, regardless of the species. However, to allow natural selection to differentiate between the species, we also assume
asymmetric costs: species A is more efficient on secretion 1 than species B but less efficient on secretion 2. As for the standard model, cooperative cross-feeding
between species A and B is possible at intermediate levels of genotypic mixing only. However, the scope for cooperation is now improved, because cross-
feeders do not compete for the same resources. For both cases, we considered well-mixed conditions and high secretion cost (here, c = 10% of maximum
growth rate per secretion).
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Fig. S5. Independent evolution of investment into secretion production. In the text (Fig. 4), we show the results of a discrete model, where the producers of
both traits invest the same amount in each secretion. That is, we considered only genotypes [0.5,0.5], [1,1], and [2,2] in the full secretors. Here, we show that
identical results are obtained when full producers can invest differentially in each trait: high investment is selected at low mixing, whereas increasing mixing
selects for reducing investment.
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Fig. S6. Effect of nonlinear costs on the evolution of between-genotype cooperation. Our models assume that genotypes that invest in more than one trait
experience a linear increase in costs. For example, if one sets c equal to 0.1, then [1,1] will reduce its growth rate by 20%, whereas genotypes that produce only
1, [1,0], and [0,1] reduce by 10%. Here, we considered the effect of nonlinear (Lower Left) decelerating and (Lower Right) accelerating costs. Specifically, [1,1]
now invests (Lower Left) 15% and (Lower Right) 30%, whereas the investment is the same for cross-feeders.
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Fig. S7. Evolution of the genotypic cooperation in our model (Black Queen-like) compared with a classical mutualism model. We modeled classical mutualism
by considering two species of bacteria (species A and B) that do not compete for the same resources and possess unique traits (one secretion each) that can only
be used by the partner species for growth. That is, there is no [1,1] genotype but just a single-trait producer and respective cheater genotype within each
species. For both cases, we considered well-mixed conditions and high secretion cost (c = 10% of maximum growth rate per secretion). The potential for
genotypic cooperation is higher under canonical mutualistic interactions (here given by a wider region of genotypic mixing, under which cooperative partners
dominate the population). The within-species frequencies of [1,0] and [0,1] in both plots overlap, as expected, and therefore, only one of two colors is seen in
the plot.

G
en

ot
yp

ic
 fr

eq
ue

nc
y

2 4 6 8 10 100
0

0.5

1

2 4 6 8 10 100
0

0.5

1

n0, mean initial number of cells per group 

[1,1] 
[1,0]+[0,1]
[0,0] 

Multiplicative 
benefits 

Additive 
benefits 

Fig. S8. Effect of the functional form of benefits on the evolution of between-genotype cooperation in microbial communities. Qualitative conclusions are
robust to both multiplicative and additive benefits to secretions. Our main models assume that the benefits of multiple secretions combine multiplicatively to
set population carrying capacity (K). For example, for two traits, K is proportional to the product of the amount of secretions 1 and 2 in each subpopulation.
Here, this scenario is compared with a case where K scales as the sum of the amounts of two secretions. Results are shown from the two-trait model (ODE
version) with cost (c) at 5% of the maximum growth rate, where the two fitness functions are, for multiplicative benefits,

K =Kbasal +KmaxB

�
g11 +g10

g11 +g10 +g01 +g00
·

g11 +g01

g11 +g10 +g01 +g00

�
,

and for additive benefits,

K =Kbasal +KmaxB

�
g11 +g10

g11 +g10 +g01 +g00
+

g11 +g01

g11 +g10 +g01 +g00

��
2:

As before, Kbasal and KmaxB are the minimal carrying capacity of the system and the maximum benefit from secretions, respectively, and gij is the density of
individuals of genotype [i,j] in each subpopulation.
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Fig. S9. Effect of the type of seeding on the evolution of cooperative cross-feeding. We find the same qualitative behavior for (Left) Poisson-based seeding,
where a random number of cells is initially introduced in each group, and (Right) fixed seeding, where we introduce the same number of cells in all groups.
However, there are some quantitative differences, because fixing the number of cells introduced per group reduces the variance between groups. This re-
duction in variance between groups affects the potential for Simpson’s Paradox and thus, the evolution of cooperation both within and between genotypes.
Costs per trait were set at 5% of the maximum growth rate.
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